Panasonic CONNECT

総合カタログ

TIG溶接機 製品一覧

			4	5	ಕ													
			溶	接法	ŧ	エアプ	溶培		入力		出力	力電流((A)			アーク	適応板厚目安(mm)	
	溶接電源品番	交流TIG	直流TIG	パルス溶接	直流手溶接	エアプラズマ切断	浴接ナビ機能		電圧 (変動許容範囲) (V)	周波数 (Hz)	三 交流 TIG	相(単 直流 TIG	目) 直流 手溶接	使用率 (%)	パルス 周波数 (Hz)	スポット 時間 (s)	0.3 0.5 0.8 1.5 4.5 6.0 8.0	ページ
	350NA1	•	•	•	•		•	三相	200~220 (180~242)	50/60	350	350	300	60	0.1~3 000 (DC) 0.1~100 (AC) 5~500 (直流手溶接)	0.01~ 10.0	ステンレス アルミニウム	2
	★ 300BP4	•	•	•	•)	•	三相	200~220 (180~242)	50/60	300	300	250	40	0.1~1 000 ^{*1} (DC) 0.1~500 (AC) 5~500 ^{*1} (直流手溶接)	0.1~5.0	ステンレス アルミニウム	3
フルデジタル	500BP4	•	•	•	•		•	三相	200~220 (180~242)	50/60	500	500	400	60	0.1~500	0.1~5.0	ステンレス アルミニウム	3
	300BZ3		•	•	•		•	三相	200~220 (180~242)	50/60	-	300	250	40	0.8~500	0.1~5.0	ステンレス	4
	200BL3		•	•	•)		単相	200~220 (170~253)	50/60	-	(200)	(150)	20	0.5~500	0.1~5.0	ステンレス	5
	200WX4T00	•	•	•	•)		三相	200 V時(180~220) 220 V時(198~242)	50/60	200	200	200	40	0.5~500	-	ステンレス 7ルミニウム	6
	300WX4T00	•	•	•	•			三相	200 V時(180~220) 220 V時(198~242)	50/60	300	300	250	40	0.5~500	-	ステンレスアルミニウム	6
	500WX4T00	•	•	•	•			三相	200 V時(180~220) 220 V時(198~242)	50/60	500	500	400	60	0.5~500	-	ステンレス アルミニウム	6
インバ	200BR1T00	•	•	•				単相	200 (170~240)	50/60	(200)	(200)	-	25	0~500	-	ステンレス 7ルミニウム	7
インバーター	300BC2		•	•	•			三相/ 単相	200~220 (180~242)	50/60	-	300 (180)	250 (180)	40	0.5~500	0.2~5.0	ステンレス	8
	200TR6		•	•	•)		三相/ 単相	200~220 (180~242)	50/60	-	200 (150)	200 (150)	40	0.5~500	0.2~5.0	ステンレス	9
	300TR6		•	•	•			三相/ 単相	200~220 (180~242)	50/60	-	300 (180)	250 (180)	40	0.5~500	0.2~5.0	ステンレス	9
	200TRCT00		•	•	•	•		三相/ 単相	200 V時(180~220) 220 V時(198~242)	50/60	-	200 (150)	200 (150)	40	0、0.5~25	-	ステンレス	10
サイリスタ	500TSP		•	•	•			三相	200 (180~220)	50/60	-	500	500	60	0.5~15	0.5~5.0	スアンレス	11

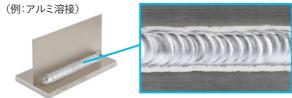
★:競技会採用機

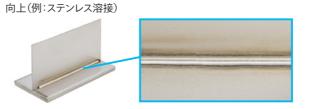
※適応板厚はあくまで目安値です。 ※1:ソフトバージョン「V3.00」から使用できます。

フルデジタル 交流/直流両用TIG溶接機

350NA1

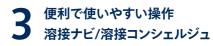
薄板から厚板まで適用可能な TIGフラッグシップモデル



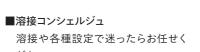


高品質溶接を実現する溶接性能 交流周波数/パルス周波数

■交流周波数を600 Hzまで拡大することで、アーク集中性がさらに向上


- 材 質:アルミ(A5052) 板 厚:1.0×6.0 mm 電 流:135 A 交流周波数:600 Hz
- ■パルス周波数を3 000 Hzまで拡大することで、アーク集中性がさらに

材 質:ステンレス(SUS304) 板 厚:1.0×6.0 mm 電 流:75 A / 5 A 直流パルス周波数:3 000 Hz


高周波ノイズの発生を低減 ワンパルススタート

■電極と母材が非接触の状態で1回のみの高周波ス タートにより、アークスタート時に発生する高周波 ノイズの大幅な低減が可能

材質・板厚・継手の入力で溶接条件を 簡単設定

■ 溶接電源

品番				YC-350NA1
定格入力管	電圧		V	AC200~220(変動許容範囲180~242)
相数、定格	周波数		<u> </u>	三相、50/60 Hz(共用)
定格入力			-	15.8 kVA(12.3 kW)
最高無負荷電圧		V	DC 84	
定格使用	≨ ※1		%	60
	直流TIG	標準		4~350
	追流IIG	精細]	2.0~30.0
		標準		5~350
	交流TIG	ハード	1	20~350
出力電流	交流川山	ソフト	1 , [5~250
調整範囲		SP ^{™2} ·静音	A	5~250
	MIX TIG		1 1	5~350
	直流手溶	接	1 1	4~300
	エキスパー	-卜直流TIG	1 1	4~350
	エキスパー	-ト交流TIG	1	5~350
制御方式			_	IGBTインバーター方式
メモリー機	能		_	100チャンネル記憶・再生
溶接法			_	直流TIG、交流TIG、MIX TIG、直流手溶接
適用溶接力	ガス		_	Ar:100 %
アップスロ	ープ時間		S	0.0~10.0
ダウンスロ	ープ時間		S	0.0~10.0
プリフロー	時間		S	0.0~120
アフターフ	口一時間		S	0.0~120
アークスポ	ット時間		S	0.01~10.0
交流周波数	数 数		Hz	30~600
MIX周波数	数		Hz	0.1~50
	直流TIG			0.1~3 000
パルス	交流TIG		Hz	0.1~100
周波数	直流手溶	· · · · · · · · · · · · · · · · · · ·	1 1	5~500
入力電源第	岩子		—	端子台(3相用、M6ボルト止め)
出力端子				ディンゼ端子
外形寸法(幅×奥行×	高さ)	mm	306×701×752
質量			kg	69

※1:使用率はJIS規格に基づきます。

※2:SPとは低電流域で広がりのある力強いアークを実現する電流波形です。 ※ガスホース3 m付

■ 浴接用トーナ						
品番	定格電	流(A)	使用率	ケーブル長(m)	冷却方式	備考
DD.EET.	直流 交流		(%) ^{**1}	7 - 77VJX (III)	カルハル	順写
YT-20TS2TBG	200	140	35	4	空冷	
YT-20TS2TBH	200	140	35	8	空冷	
YT-30TS2TBG	300	210	20	4	空冷	
YT-30TS2TBH	300	210	20	8	空冷	
YT-35TSW2TBG ^{**2}	350	245	100	4	水冷	
YT-35TSW2TBH ^{**2}	350	245	100	8	水冷	

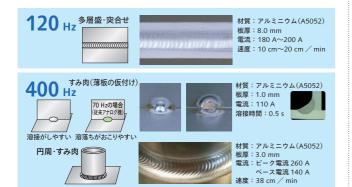
ワンパルススタートSW付き

※1:使用率はJIS規格に基づきます。 ※2:必要最小冷却水量 1.0 L/min、冷却水水圧 0.1 Mpa-0.35 Mpa

フルデジタル

BP4シリーズ

使いやすさを形にしました! アルミ溶接をやさしく、美しく、 高い品質で!



高品質溶接を実現する溶接性能 30 Hz~400 Hz交流出力制御で アルミ溶接が変わる

自在なアークコントロールで熟練技を容易に再現。

- ■難しいとされるすみ肉溶接が容易に。フィラーワイヤの挿入もラクラク。
- ■アークの集中性が増し、溶落ちを防いだり、仮付けが容易。

※500BP4:300 A以上では最大交流周波数が400 Hz以下となります。

熟練者の技が冴える 『エキスパート』モード

TIG溶接において定電流特性・垂下特性がモード選択可能です。

便利で使いやすい操作 条件設定に迷ったら『溶接ナビ』

豊富なデータベース、100種類以上の溶接条件が登録されています。 カスタマイズも可能、オリジナルの溶接条件が構築できます。

(%)3

35

20

20

20

20

100

100

100

100

100

100

ケーブル長(m)

8

4

8

4

8

8

冷却方式

空冷

空冷

空冷

空冷

空冷

水冷

水冷

水冷

水冷

備考

300BP4 用

300BP4 用

500BP4 用

500BP4 用

300BP4 用

300BP4 用

500BP4 用

500BP4 用

300BP4 用

300BP4 用

500RP4 田

500BP4 用

直流 交流

200

300

300

300 210

300

300

300

300

500

500

140

140

210

210

210

210

210

210

350

350

300 210

■ 溶接用トーチ

YT-20TS2TAG

YT-20TS2TAH

YT-30TS2

YT-30TS2C1

YT-30TS2TAG YT-30TS2TAH

YT-30TSW2

YT-30TSW2C1

YT-30TSW2TAG

YT-30TSW2TAH

YT-50TSW2C1

※TAG/TAH:ディンゼ端子タイプ

YT-50TSW2

品番

品番			YC-300BP4	YC-500BP4			
定格入力管	電圧	V	AC200~220(変動許容範囲180~242)				
相数、定格	·周波数	_	三相、50	0/60 Hz			
定格入力		_	11.4 kVA(9.7 kW)	17.3 kVA(16.5 kW)			
最高無負荷	市電圧	V	DC 78	DC 81			
定格使用	を ^{※1}	%	40	60			
	直流TIG		4~300	5~500			
	標準		10~300	20~500			
	交流TIG ハード		20~300	20~500			
山土而法	1 ⁻		10~200	20~330			
出力電流	SP ^{**4**5}	Α	10~200	_			
調整範囲	MIX TIG		10~300	20~500			
	直流手溶接		4~250	10~400			
	エキスパート直流TIG		4~300	5~500			
	エキスパート交流TIG		10~300	20~500			
制御方式		_	IGBTインバ	ーター方式			
メモリー機	能	_	50チャンネ	ル記憶・再生			
溶接法		_	直流TIG、交流TIG、MIX TIG、直流手溶接				
適用溶接	ガス	_	Ar:100 %				
アップスロ	ープ時間	S	0.0~10.0				
ダウンスロ	ープ時間	S	0.0~	-10.0			
プリフロー	時間	S	0.0~30.0				
アフターフ	口一時間	S	0.0~	-30.0			
アークスポ	ット時間	S	0.1~	-5.0			
交流周波数	数	Hz	30~400 (標準:70、SP ^{※4} :30~200)	30~最大400 (標準:70) ^{※2}			
MIX周波数		Hz	0.1~20.0	(標準:1.0)			
	直流TIG ^{※4}		0.1~1 000	0.4. 500			
パルス	交流TIG	Hz	0.1~500	0.1~500			
周波数	直流手溶接 ^{※4}		5~500	_			
入力電源域		_	端子台(M5	ボルト止め)			
出力端子		_	ディンゼ端子	銅板型端子 ^{※6} (M8ポルト付属)			
外形寸法(「幅×奥行×高さ) ^{※3}	mm	375×538×534	378×543×896			
哲量		kσ	51	82			

- ※1:使用率はJIS規格に基づきます。 ※2:電流設定値により最大周波数は変化します。 ※3:奥行寸法には後面の入力電源端子カバーは含みません。 ※4:ソフトバージョン「V3.00」から使用できます。 ※5:SPとは低電流域で広がりのある力強いアークを実現する電流波形です。
- ※6:500BP4はディンゼ端子タイプのトーチは接続できません。 ※ガスホース3 m付

フルデジタル 直流TIG溶接機

300BZ3

操作性に優れた高品位な直流機

高品質溶接を実現する溶接性能 フルデジタルならではの精密制御 溶けぎわがシャープと好評です

直流 TIG TIG 7/5-溶接 チ溶接 ナビ 送給装置

- ■1 A単位で条件設定ができ、バラツキのない高品質な溶接が可能。
- 溶接条件を正し く再現可能。

个ステンレス(板厚:0.5 mm)重ねすみ肉溶接(共付け) (パルス雷流: 50 A ベース雷流: 5 A 速度: 30 cm/min)

良好なアークスタートを実現

■4 Aでも100 %に近い瞬時アークスタート。 ステンレス0.3 mm突合せ溶接で溶落ちの 少ないアークスタートが可能となりました。 (電極:2.4 mm 角度: 30° (ホット電流「弱」設定)

母材-電極間:0.5 mm)

- ■アークの集中性が良く、ふらつきが少ない安定したアークを実現。
- ■太い電極棒(2.4 mmΦ)で薄板から厚板まで溶接が可能。
- ■ガスレンズ付ノズル(オプション)のご使用でビード外観がさらに 良好に。

便利で使いやすい操作 条件設定に迷ったら『溶接ナビ』

- ■トータルで55種類の溶接条件がデータベースに登録されています。
- ■自動決定した溶接条件はお好みで変更可能です。さらに変更した 溶接条件を記憶(64チャンネル)すれば、オリジナル条件が構築でき ます。

■ 淡炷電道

品番		YC-300BZ3
定格入力電圧	V	AC 200~220 (変動許容範囲180~242)
目数、定格周波数		三相、50/60 Hz
定格入力		11.5 kVA(10.2 kW)
最高無負荷電圧	V	DC 69
定格使用率 ^{※1}	%	40
出力電流 直流TIG		4~300
周整範囲 直流手溶接	7 ^ [4~250
訓御方式		IGBTインバーター方式
メモリー機能		64チャンネル記憶・再生
容接法		直流TIG、直流手溶接
適用溶接ガス		Ar:100 %
アップスロープ時間	S	0.0~10.0
ダウンスロープ時間	S	0.0~10.0
プリフロー時間	S	0.0~10.0
アフターフロー時間	S	0.0~30.0
アークスポット時間	S	0.1~5.0
パルス周波数	Hz	0.8~500
入力電源端子		端子台(M5ボルト止め)
出力端子		ディンゼ端子
外形寸法(幅×奥行×高さ)	mm	380×380×260
質量	kg	19.5

※ガスホース3 m付

■ 浴接用トーナ				
品番	定格電流(A) 直流	使用率(%)**1	ケーブル長(m)	冷却方式
YT-20TS2TAG	200	35	4	空冷
YT-20TS2TAH	200	35	8	空冷
YT-30TS2TAG	300	20	4	空冷
YT-30TS2TAH	300	20	8	空冷
YT-30TSW2TAG	300	100	4	水冷
YT-30TSW2TAH	300	100	8	水冷

※1:使用率はJIS規格に基づきます。

※TAG/TAH:ディンゼ端子タイプ

フルデジタル 直流TIG溶接機

200BL3

薄型·軽量構造! 出張工事に最適な フルデジタル・ポータブル

「現場」を考えた最適設計

- ■堅牢ボディーで、重さはわずか9 kg!
- ■入力電圧:170 V~253 V対応。安定動作が可能。
- ■直流手溶接(電撃防止/アークドライブ機能付)にも対応

安定した溶接品質を実現する機能 フルデジタル制御により、精密な溶接条件 設定・再現・管理が容易になります!

- ■直流パルス機能搭載。
- ■アークスポット機能搭載。
- ■溶接条件の記憶/再生機能(9チャンネル)搭載。

シンプルで使いやすい操作性 フルデジタル制御で、精密・簡単操作を実現!

大型のジョグダイヤルと3つのボタンで操作できます!

シンプル操作パネル

クレータ・パルス機能も 簡単設定

モード選択ボタン

ジョグダイヤル

溶接条件メモリー(9チャンネル)を搭載。 ワークに合わせて溶接条件の

記憶・再生が可能。

■ 溶接電源

品番		YE-200BL3		
定格入力電圧	V	AC 200~220 (変動許容範囲:170~253)		
相数、定格周波数	-	単相、50/60 Hz		
定格入力	I —	7.3 kVA(4.8 kW)		
最高無負荷電圧	V	DC 65		
定格使用率※1	%	20		
出力電流 直流TIG	A	5~200		
調整範囲 直流手溶接] ^	5~150		
制御方式	-	IGBTインバーター方式		
メモリー機能	I —	9チャンネル記憶・再生		
溶接法	I —	直流TIG、直流手溶接		
適用溶接ガス	I —	Ar:100 %		
アップスロープ時間	s	0.0~10.0		
ダウンスロープ時間	s	0.0~10.0		
プリフロ一時間	s	0.0~25.0		
アフターフロー時間	S	0.0~25.0		
アークスポット時間	S	0.1~5.0		
パルス周波数	Hz	0.5~500		
入力電源端子	_	入カケーブル2.5 m付(M6)		
出力端子	-	母材側ケーブル3 m付		
外形寸法(幅×奥行×高さ)**2	mm	95×420×295		
質量	kg	9		

※1:使用率はJIS規格に基づきます。

※2:突起物は含みません。 ※ガスホース3 m付

■ 溶接用トーチ

	品番	定格電流(A)	使用率(%)※1	ケーブル長(m)	冷却方式	
	中省	直流	(90)	ケーグル表(III)		
١	YT-15TS2TAD	150	35	8	空冷	

※1:使用率はJIS規格に基づきます。

ツインインバーター 交流/直流両用TIG溶接機

WX4シリーズ

多様な材料を 高品位に溶接する万能タイプ

タングステン電力消耗差

ミックスTIG溶接

高品位溶接を実現する多様な溶接モード ツインインバーター制御と交流出力周波数の 切り替えで様々なアルミニウムへの適用範囲が拡大

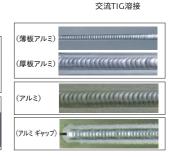
■交流出力周波数「高」側では集中したアークが得られます。 6000番、7000番の硬質アルミニウム、アルミブロンズ等の溶接に威力を発揮。

■交流出力周波数「低」側では薄板から厚板、各種アルミニウム合金材料まで幅広く対応。

(アルミ7000番系)

(アルミブロンズ)

多様なワークに 多彩な溶接モードで対応


- ●アークの集中性が優れているため薄板アルミニウムのすみ肉(重ね)継ぎ手溶接に威力を発揮。
- ●交流TIGと直流TIGの組合せで深い溶込みを得やすく。
- ●電極の消耗を大幅に軽減。

■交流標準TIG溶接

■ミックスTIG溶接

- ●薄板から厚板、様々な形状のワークに対応。
- ■交流ソフトTIG溶接
- ●柔らかいアークで、アーク音が静か。
- ■交流ハードTIG溶接
- ●集中したアークが得られます。
- ●薄板ギャップ継ぎ手の溶接に威力を発揮。

ミックスTIG溶接 従来のTIG溶接 アークが 🥅 集中 広がりやすい ミックスTIG溶接 交流TIG溶接

■ 液体雨液

电源							
			YC-200WX4T00	YC-300WX4T00	YC-500WX4T00		
臣王		V	AC 200 (180 ~ 220) AC 220 (198 ~ 242)				
周波数		—		三相、50/60 Hz			
		—	9 kVA(7 kW)	12 kVA(10. 5 kW)	24 kVA(19.5 kW)		
E ^{※1}		%	4	-0	60		
直流TIG			4~200	4~300	5~500		
	標準		10~200	10~300	20~500		
交流TIG	ハード		20~200	20~300	40~500		
	ソフト	Α	10~130	10~200	20~330		
MIX TIG]	10~200	10~300	20~500		
直流手溶技	妾]	4~200	4~250	50~400		
		—	IGBT インバーター方式				
		_	直流TIG、交流TIG、MIXTIG、直流手溶接				
_{ブス}		-	Ar:100 %				
ープ時間		S	0 または 0.1~5				
ープ時間		S		0 または 0.2~10			
時間		S	0.3				
口一時間		S	2~20				
女		Hz		0.5~10			
パルス周波数 Hz			0.5~500				
入力電源端子 —			端子台(M5ポルト止め)				
出力端子 —			銅板型端子(M8ボルト付属)				
幅×奥行×高	(さ)	mm	380×530×730	380×530×730	440×585×945		
質量 kg			74	74	118		
	国 国 国 直 流 TIG 交 流 TIG 交 流 TIG 直 流 TIG 直 流 TIG 直 流 TIG 直 流 TIG 直 流 TIG ラ で が ま で 、 で 、 ブ で 、 の に 。 に 。 。 に 。 。 に 。 。 に 。 に 。 に 。 。 。 。 。 。 。 。 。 。 。 。 。 。	を 原	■	YC-200WX4T00	YC-200WX4T00 YC-300WX4T00 YC-300WX4T00 YC-300WX4T00 YC-300WX4T00 AC 200 (180 ~ 220 (198 ~ 242 AC 220 AC 200 AC 300 AC 300 AC 300 AC 200 AC 300 AC 200 AC 250 AC 200 AC 250 AC 200 AC 250 AC 200 AC 200 AC 250 AC 200 AC 250 AC 200 AC 250 AC 200 AC 250 AC 250		

^{※1:}使用率はJIS規格に基づきます。

■ 溶接用トーチ

品番	定格電	流(A)	使用率(%)**1	ケーブル長(m)	冷却方式	
印御	直流	交流	使用率(%)	リー/ル表(III)	71707716	
YT-08TS2	80	55	35	4	空冷	
YT-12TS2	120	85	35	4	空冷	
YT-15TS2	150	105	35	4	空冷	
YT-15TS2C1	150	105	35	8	空冷	
YT-20TS2	200	140	35	4	空冷	
YT-20TS2C1	200	140	35	8	空冷	
YT-20TSW2	200	140	100	4	水冷	
YT-30TS2	300	210	20	4	空冷	
YT-30TS2C1	300	210	20	8	空冷	
YT-30TSW2	300	210	100	4	水冷	
YT-30TSW2C1	300	210	100	8	水冷	
YT-50TSW2	500	350	100	4	水冷	
YT-50TSW2C1	500	350	100	8	水冷	

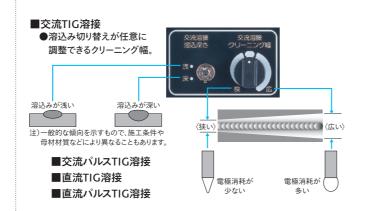
^{※1:}使用率はJIS規格に基づきます。

●その他付帯機器、詳細はWebをご覧ください。

200BR1

アルミニウムやステンレスのTIG溶接に 使いやすさと軽さにこだわった ポータブルタイプ

インバーター 交流/直流両用TIG溶接機


現場での使いやすさを 追求した設計

- ■使いやすさを追求し配列したスイッチパネル。
- ■持ち運びやすい小型・軽量タイプ。《質量15 kg》

高品位溶接を実現する 多様な溶接モード

アルミニウム、ステンレス、銅、チタン、真鍮等 各種金属の溶接が可能。

■ 溶接電源

品番			YE-200BR1T00			
定格入力管	電圧	V	AC200(変動許容範囲:170~240)			
相数、定格	周波数	_	単相、50/60 Hz			
定格入力		_	7.3 kVA(5.4 kW)			
最高無負荷	 市電圧	V	DC 76			
定格使用率	≥ ^{*1}	%	25			
出力電流	直流TIG	A	4~200			
調整範囲	交流TIG] ^	10~200			
制御方式		_	IGBTインバーター方式			
溶接法	溶接法		直流TIG、交流TIG			
適用溶接力	適用溶接ガス		Ar:100 %			
アップスロ	ープ時間	S	0.2~5			
ダウンスロ	ープ時間	S	0.2~5			
プリフロー	時間	S	0.3			
アフターフ	ロー時間	S	0~10			
パルス周波	数	Hz	0~500			
入力電源域	入力電源端子		入カケーブル3 m付(M6)			
出力端子	出力端子		母材側ケーブル3 m付			
外形寸法(幅×奥行×高さ)	mm	212×448×333			
質量		kg	15			

※1:使用率はJIS規格に基づきます。

■ 溶接用トーチ

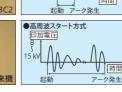
品番	定格電流(A) 直流 交流		使用率(%)**1	ケーブル長(m)	冷却方式
YT-20TS2TAD	200	140	35	8	空冷

※1:使用率はJIS規格に基づきます。

高周波レス直流TIG溶接機

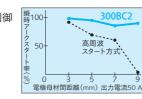
300BC2

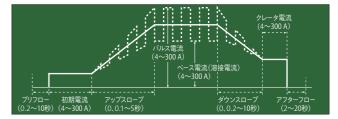
高周波レスでノイズ低減 高い運搬性と保管性を実現



高周波ノイズ低減によるメリット 電子機器へのノイズ影響の気になる現場に

- ■アークスタート時に高周波を 使用しないため、電子機器 に及ぽす高周波ノイズの影 響を低減。
- ■電極表面を荒らさず、電極 の寿命が長くなり、高頻度の アークスタート時に効果を発 揮。





電極~母材間距離に左右されないアークスタート性 ▲ 4 Aから定格電流まで安定したソフトなアーク

■従来インバーター機比1.6倍の高速制御 で、アークの集中性と安定性を実現。

3 用途に応じて選べる 豊富な波形制御 豊富な波形制御

Panasonic

薄板溶接に威力を発揮

■ミドルパルス制御(10~500 Hz) ■アップスロープ・ダウンスロープ制御 溶落ちのない均一な溶接

■ローパルス制御(0.5~25 Hz) ■初期電流制御 中・厚板溶接に威力を発揮 溶落ち等の欠陥を防止

溶接開始部での溶込み不足や

スペースの限られた現場への最適解

運搬性・保管性を高めた ケース構造

保管時3段積みまで可能。

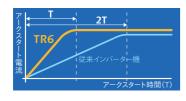
段積みもOK!

品番		YC-300BC2		
定格入力電圧	V		午容範囲:180~242)	
相数、定格周波数			50/60 Hz	
±16.2 I		単相	三相	
定格入力		10.4 kVA(6.5 kW)	14 kVA(10.2 kW)	
最高無負荷電圧 V		DC 80(始動)	電圧 DC 160)	
定格使用率※1 %		4	.0	
出力電流 直流TIG	A	4~180	4~300	
調整範囲 直流手溶接	7 ^ [4~180	4~250	
制御方式		IGBT インバーター方式		
容接法		直流TIG、直流手溶接		
適用溶接ガス		Ar:100 %		
アップスロープ時間	S	0 または 0.1~5		
ダウンスロープ時間	S	0 または 0.2~10		
プリフロ一時間	S	0 または 0.2~10		
アフターフロー時間	S	2~20		
アークスポット時間	S	0.2~5.0		
パルス周波数	Hz	0.5~500		
入力電源端子		端子台(M5 ボルト止め)		
出力端子		銅板型端子(M8 ボルト付属)		
外形寸法(幅×奥行×高さ)	mm	288×520×552		
質量	kg	41		

※1:使用率はJIS規格に基づきます。

※単相入力で使用する場合は入力端子「U」「V」相に接続してください。 ※ガスホース3m付

■ 溶接用トーチ							
品番	定格電流(A) 直流	使用率(%)**1	ケーブル長(m)	冷却方式			
YT-08TS2	80	35	4	空冷			
YT-12TS2	120	35	4	空冷			
YT-15TS2	150	35	4	空冷			
YT-15TS2C1	150	35	8	空冷			
YT-20TS2	200	35	4	空冷			
YT-20TS2C1	200	35	8	空冷			
YT-20TSW2	200	100	4	水冷			
YT-30TS2	300	20	4	空冷			
YT-30TS2C1	300	20	8	空冷			
YT-30TSW2	300	100	4	水冷			
YT-30TSW2C1	300	100	8	水冷			


※1:使用率はJIS規格に基づきます。

300TR6

4 Aから定格電流まで安定したシャープなアーク。

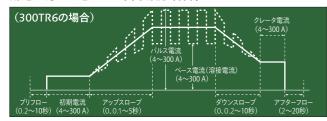
従来インバーター機比1.6倍の高速制御で、アークの集中性と安定性を実現。

新回路の採用で アークスタートまでの 立ち上がりは 約2倍速く(従来機比)

運搬性/保管性を 高めた構造

スペースの限られた現場への最適解

保管時3段積みまで可能。


200TR6

小型で軽く、しかも高堅牢!

段積みもOK!

用途に応じて選べる豊富な波形制御。

■ミドルパルス制御(10~500 Hz) ■アップスロープ・ダウンスロープ制御 薄板溶接に威力を発揮

■ 密接田トーチ

- 溶落ちのない均一な溶接 ■ローパルス制御(0.5~25 Hz)
 - ■初期電流制御
- 溶接開始部での溶込み不足や 中・厚板溶接に威力を発揮 溶落ち等の欠陥を防止

■ 溶接電源

— /1/3 10/10/10						
品番		YC-200TR6 YC-300TR6			OOTR6	
定格入力電圧	V	AC 2	00-220(変動計	- F容範囲:180~	-242)	
相数、定格周波数	_		単相/三相	√50/60 Hz		
定格入力		単相	三相	単相	三相	
上 作 八 力		6.5 kVA(4.7 kW)	7.6 kVA(6.9 kW)	7.9 kVA(5.9 kW)	10.5 kVA(9.3 kW)	
最高無負荷電圧	V		DC	70		
定格使用率**1	%	40				
出力電流 直流TIG	A	4~150	4~200	4~180	4~300	
調整範囲 直流手溶接] ^	4~150	4~200	4~180	4~250	
制御方式	_		IGBT インバ	バーター方式		
溶接法	-		直流TIG、ī	直流手溶接		
適用溶接ガス	-		Ar:1	00 %		
アップスロープ時間	S		0 または	0.1~5		
ダウンスロープ時間	S		0 または	0.2~10		
プリフロー時間	S		0 または	0.2~10		
アフターフロー時間	S		2~	-20		
アークスポット時間	S		0.2	~5.0		
パルス周波数	Hz		0.5~	-500		
入力電源端子	_	端子台(M5 ボルト止め)				
出力端子	-	銅板型端子(M8 ボルト付属)				
外形寸法(幅×奥行×高さ)	mm	288×520×552				
質量	kg		3	7		

※1:使用率はJIS規格に基づきます。

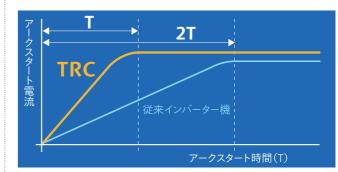
※単相入力で使用する場合は入力端子「U」「V」相に接続してください。

■ 冷技用トーナ								
定格電流(A) 直流			冷却方式					
80	35	4	空冷					
120	35	4	空冷					
150	35	4	空冷					
150	35	8	空冷					
200	35	4	空冷					
200	35	8	空冷					
200	100	4	水冷					
300	20	4	空冷					
300	20	8	空冷					
300	100	4	水冷					
300	100	8	水冷					
	80 120 150 150 200 200 200 300 300 300	直流 使用率(%) *** 80 35 120 35 150 35 150 35 200 35 200 35 200 100 300 20 300 20 300 100	直流 使用率(%) ケーブル長(m) 80 35 4 120 35 4 150 35 8 200 35 4 200 35 8 200 100 4 300 20 4 300 20 8 300 100 4					

※1:使用率はJIS規格に基づきます。

200TRC

1台3役で稼働率アップ 出張工事にも最適


1台3役、様々なシーンで適用可能。

4 Aから定格電流まで安定したシャープなアーク。

従来インバーター機比1.6倍の高速制御で、アークの集中性と安定性を実現。

新回路の採用でアークスタートは、 従来機比約2倍の素早い立ち上がりを実現。

作業法	主な用途
直流TIG溶接	ステンレス、軟鋼、チタン、銅などの溶接
直流手溶接	被覆棒による軟銅、ステンレス、合金銅などの溶接
エアプラズマ切断	軟鋼、ステンレス(最大35 mm) アルミニウム(最大20 mm)などの切断

切断

切断能力/薄板用~中板用(接触&非接触) 0.1~35 mm

板厚(mm) 0.1 軟鋼 亜鉛鋼板

電極1本あたりの 切断長さ/95 m

- ■切断条件(接触切断) ●材 料:軟鋼
- ●板 厚:12 mm
- ●チップ:ショートチップ ●電 極:ショート電極 ※切断長さは用途によって変わります。
- ※三相入力時 :接触 :非接触 ※電流値、板厚、材質により切断速度は異なります。

■ 淡炷電酒

一门区	电心				
品番			YC-200TRCT00		
定格入力智	電圧	V	AC 200/220(変動許容範囲200 V時:180~220 220 V峙:198~242)		
相数、定格	周波数	I —	単相/三相	√50/60 Hz	
定格入力			単相	三相	
上怡八 刀		-	8.1 kVA(5.1 kW)	12.1 kVA(10.3 kW)	
最高無負荷	苛電圧	V	DC 80(切	断時 290)	
定格使用率	≤ ^{※1}	%	40(切断・三柱	目入力時 60)	
.1. 1 == 54	直流TIG		4~150	4~200	
出力電流	直流手溶接	A	4~150	4~200	
神雀乳西	切断	7	10~40	10~60	
制御方式		T -	IGBTインバーター方式		
溶接法		1 —	直流TIG、直流手溶接		
適用溶接力	ガス(溶接)	T -	Ar:100 %		
アップスロ	ープ時間※2	S	0 または 0.1~5		
ダウンスロ	Iープ時間 ^{※2}	S	0 または 0.2~10		
プリフロー	時間	S	0	.3	
アフターフ	口一時間	S	2~	·20	
パルス周波	支数	Hz	0または	0.5~25	
切断用エア	7	1 -	外部供給式		
入力電源		1 -	端子台(M5 ボルト止め)		
出力端子		T -	銅板型端子(M8 ボルト付属)		
外形寸法((幅×奥行×高さ)※3	mm	288×579×581		
質量		kg	49		
×4./± m ±	714 UC+9401= # ~** + +				

※1:使用率はJIS規格に基づきます。

※2:0秒に設定する場合は、プリント基板上での設定が必要です。 ※3:エアユニット未取り付け時。

※単相入力で使用する場合は入力端子「U」「V」相に接続してください。 ※ガスホース3 m付

■ 溶接用トーチ

品番	定格電流(A) 直流	使用率(%)**1	ケーブル長(m)	冷却方式
YT-08TS2	80	35	4	空冷
YT-12TS2	120	35	4	空冷
YT-15TS2	150	35	4	空冷
YT-15TS2C1	150	35	8	空冷
YT-20TS2	200	35	4	空冷
YT-20TS2C1	200	35	8	空冷
YT-20TSW2	200	100	4	水冷
YT-30TS2	300	20	4	空冷
YT-30TS2C1	300	20	8	空冷
YT-30TSW2	300	100	4	水冷
YT-30TSW2C1	300	100	8	水冷

※1:使用率はJIS規格に基づきます。

■切断用トーナ								
品番	定格電流(A)	使用率(%)**1	ケーブル長(m)	冷却方式				
YT-06PD3	60	60 ^{₩4}	10	空冷				

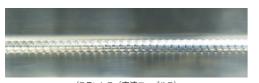
※1:使用率はJIS規格に基づきます。

●その他付帯機器、詳細はWebをご覧ください。

TSPシリーズ

直流TIG溶接と直流手溶接が できる経済機

高い溶接性能と


経済性の両立

- ●小電流(5 A)でも良好なアークスタート。 ICサイリスタ制御採用。
- ●高速溶接でもソフトで安定したアーク。
- ●TIGトーチケーブル20 m使用時でも安定した出力。

直流パルスTIG溶接のメリット

- ●きれいに揃いやすい溶接ビード。
- ●均一な裏波溶接が出しやすい。
- ●溶込みが均一で、安定した溶接結果。
- ●板厚違いの溶接、ギャップのある溶接、オールポジションの溶接に 威力を発揮。

〈ステンレス/直流ローパルス〉

直流手溶接にも強み

- ●軟鋼・ステンレス・高張力鋼・ Cr-Mo鋼などを高品質に溶接。
- ●低スパッタのため、スパッタ除去 時間が短縮。
- ●TIG溶接後の2層目以降の能率 アップに威力を発揮します。

2層目以降…直流手溶接で能率向上

詳しくはWebへ

1層目…TIG溶接で均一な裏波ビード

_ , _ , _ , _ ,		
品番		YC-500TSP
定格入力電圧	V	AC 200(変動許容範囲:180~220)
相数、定格周波数		三相、50/60 Hz
定格入力	_	33.2 kVA(30.7 kW)
最高無負荷電圧	V	72
定格使用率※1	%	60
出力電流調整範囲	Α	5~500
溶接法	—	直流TIG、直流手溶接
適用溶接ガス(溶接)		Ar:100 %
アップスロープ時間※2	S	0 または 0.2~10
ダウンスロープ時間 ^{※2}	S	0 または 0.2~10
プリフロ一時間	S	0.3
アフターフロー時間	S	2~23
アークスポット時間	S	0.5~5
パルス周波数	Hz	0.5~15
入力電源端子	_	ケーブル接続(M6 ボルト止め)
出力端子	_	銅板型端子(M8 ボルト付属)
外形寸法(幅×奥行×高さ)	mm	500×650×1020
FF 🖂	1	040

※1:使用率はJIS規格に基づきます。

※2:0秒に設定する場合は、プリント基板上での設定が必要です。 ※ガスホース3 m付

11

■ 溶控用し_チ

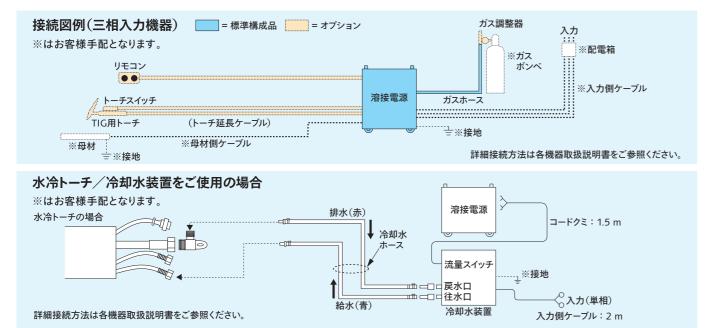
■ 冷技用トーア							
品番	定格電流(A)	使用率(%)**1	ケーブル長(m)	冷却方式			
印留	直流	区/11年(70)))/v[X(III)	7112477324			
YT-30TS2	300	20	4	空冷			
YT-30TS2C1	300	20	8	空冷			
YT-30TSW2	300	100	4	水冷			
YT-30TSW2C1	300	100	8	水冷			
YT-50TSW2	500	100	4	水冷			
YT-50TSW2C1	500	100	8	水冷			

※1:使用率はJIS規格に基づきます。

RED TIG TORCH 2

TIG溶接用トーチ

溶接性能と操作性、安全性を高めた TIG溶接用トーチ

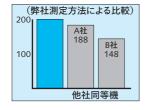


		定格電	5±(Λ)							冷却水装置		
No.	品番 (適応電源)	直流	交流	使用率 ^{※1} (%)	ケーブル 長(m)	適用電極径 (Φmm) ()内はオプション	適用ノズルロ径 (mm) ()内はオプション	冷却水量 (L/min)	冷却水水圧 (MPa)	冷却能力 (kW)	質量 (kg)	冷却方式
1	YT-08TS2	80	55	35	4	(0.5)、(1.0)、1.6	8	_	_	_	0.9	空冷
2	YT-12TS2	120	85	35	4	(0.5)、(1.0)、1.6、(2.0)	6.4、(8)、(10)、(11)、 (12.7)、(16)	_	_	_	0.9	空冷
3	YT-15TS2	150	105	35	4	(0.5)、(1.0)、1.6、(2.0)、 (2.4)	(6.5)、8、(9.5)、(11)、 (1 2.7)、(16)、(19)	_	_	_	1.2	空冷
4	YT-15TS2C1	150	105	35	8	(0.5)、(1.0)、1.6、(2.0)、 (2.4)	(6.5)、8、(9.5)、(11)、 (12.7)、(16)、(19)	_	_	_	2.0	空冷
5	YT-15TS2TAD (200BL3)	150	105	35	8	(0.5)、(1.0)、1.6、(2.0)、 (2.4)	(6.5)、8、(9.5)、(11)、 (12.7)、(16)、(19)	_	_	_	2.0	空冷
6	YT-20TS2	200	140	35	4	(0.5)、(1.0)、(1.6)、(2.0)、 2.4、(3.2)	(6.5)、(8)、9.5、(11)、 (12.7)、(16)、(19)	_	_	_	1.8	空冷
7	YT-20TS2C1	200	140	35	8	(0.5)、(1.0)、(1.6)、(2.0)、 2.4、(3.2)	(6.5)、(8)、9.5、(11)、 (12.7)、(16)、(19)	_	_	_	3.0	空冷
8	YT-20TS2TAD (200BR1)	200	140	35	8	(0.5)、(1.0)、(1.6)、(2.0)、 2.4、(3.2)	(6.5)、(8)、9.5、(11)、 (12.7)、(16)、(19)	_	_	_	3.0	空冷
9	YT-20TS2TAG (300BP4/300BZ3)	200	140	35	4	(0.5)、(1.0)、(1.6)、(2.0)、 2.4、(3.2)	(6.5)、(8)、9.5、(11)、 (12.7)、(16)、(19)	_	_	_	1.9	空冷
10	YT-20TS2TAH (300BP4/300BZ3)	200	140	35	8	(0.5)、(1.0)、(1.6)、(2.0)、 2.4、(3.2)	(6.5)、(8)、9.5、(11)、 (12.7)、(16)、(19)	_	_	_	3.1	空冷
11	YT-20TS2TBG ^{#2} (350NA1)	200	140	35	4	(0.5)、(1.0)、(1.6)、2.4、 (3.2)	(6.5)、(8)、9.5、(11)、 (12.7)、(16)、(19)	_	_	_	1.9	空冷
12	YT-20TS2TBH ^{#2} (350NA1)	200	140	35	8	(0.5)、(1.0)、(1.6)、2.4、 (3.2)	(6.5)、(8)、9.5、(11)、 (12.7)、(16)、(19)	_	_	_	3.1	空冷
13	YT-20TSW2	200	140	100	4	(0.5)、(1.0)、(1.6)、(2.0)、 2.4、(3.2)	(6.4)、(8)、10、(11)、 (12.7)、(16)	0.7以上	0.1~0.35	0.75以上	1.4	水冷
14	YT-30TS2	300	210	20	4	(0.5)、(1.0)、(1.6)、(2.0)、 (2.4)、3.2、(4.0)	(6.5)、(8)、(9.5)、11、 (12.7)、(16)、(19)	_	_	_	2.2	空冷
15	YT-30TS2C1	300	210	20	8	(0.5)、(1.0)、(1.6)、(2.0)、 (2.4)、3.2、(4.0)	(6.5)、(8)、(9.5)、11、 (12.7)、(16)、(19)	_	_	_	3.7	空冷
16	YT-30TS2TAG (300BP4/300BZ3)	300	210	20	4	(0.5)、(1.0)、(1.6)、(2.0)、 (2.4)、3.2、(4.0)	(6.5)、(8)、(9.5)、11、 (12.7)、(16)、(19)	_	_	_	2.3	空冷
17	YT-30TS2TAH (300BP4/300BZ3)	300	210	20	8	(0.5)、(1.0)、(1.6)、(2.0)、 (2.4)、3.2、(4.0)	(6.5)、(8)、(9.5)、11、 (12.7)、(16)、(19)	_	_	_	3.8	空冷
18	YT-30TS2TBG ^{**2} (350NA1)	300	210	20	4	(0.5)、(1.0)、(1.6)、(2.4)、 3.2、(4.0)	(6.5)、(8)、(9.5)、11、 (12.7)、(16)、(19)	_	_	_	2.3	空冷
19	YT-30TS2TBH ^{**2} (350NA1)	300	210	20	8	(0.5)、(1.0)、(1.6)、(2.4)、 3.2、(4.0)	(6.5)、(8)、(9.5)、11、 (12.7)、(16)、(19)	_	_	_	3.8	空冷
20	YT-30TSW2	300	210	100	4	(0.5)、(1.0)、(1.6)、(2.0)、 (2.4)、3.2、(4.0)	(6.5)、(8)、(9.5)、11、 (12.7)、(16)、(19)	0.7以上	0.1~0.35	0.8以上	1.8	水冷
21	YT-30TSW2C1	300	210	100	8	(0.5)、(1.0)、(1.6)、(2.0)、 (2.4)、3.2、(4.0)	(6.5)、(8)、(9.5)、11、 (12.7)、(16)、(19)	0.7以上	0.1~0.35	1.6以上	3.0	水冷
22	YT-30TSW2TAG (300BP4/300BZ3)	300	210	100	4	(0.5)、(1.0)、(1.6)、(2.0)、 (2.4)、3.2、(4.0)	(6.5)、(8)、(9.5)、11、 (12.7)、(16)、(19)	0.7以上	0.1~0.35	0.8以上	1.9	水冷
23	YT-30TSW2TAH (300BP4/300BZ3)	300	210	100	8	(0.5)、(1.0)、(1.6)、(2.0)、 (2.4)、3.2、(4.0)	(6.5)、(8)、(9.5)、11、 (12.7)、(16)、(19)	0.7以上	0.1~0.35	1.6以上	3.1	水冷
24	YT-35TSW2TBG ^{®2} (350NA1)	350	245	100	4	(0.5)、(1.0)、(1.6)、(2.4)、 3.2、(4.0)	(6.5)、(8)、(9.5)、11、 (12.7)、(16)、(19)	1.0以上	0.15~0.35	1.0以上	1.9	水冷
25	YT-35TSW2TBH ^{®2} (350NA1)	350	245	100	8	(0.5)、(1.0)、(1.6)、(2.4)、 3.2、(4.0)	(6.5)、(8)、(9.5)、11、 (12.7)、(16)、(19)	1.0以上	0.15~0.35	1.8以上	3.1	水冷
26	YT-50TSW2	500	350	100	4	(1.0)、(1.6)、(2.0)、(2.4)、 (3.2)、4.0、(4.8)、(6.4)	(9.5)、(12.7)、16、(19)	1.0以上	0.15~0.35	1.9以上	2.6	水冷
27	YT-50TSW2C1	500	350	100	8	(1.0)、(1.6)、(2.0)、(2.4)、 (3.2)、4.0、(4.8)、(6.4)	(9.5)、(12.7)、16、(19)	1.5以上	0.2~0.35	3.3以上	4.4	水冷

注)本トーチはトーチスイッチ付です。 ※その他フレキシブルタイプ/ベンシルタイプもございます。

※1:使用率はJIS規格に基づきます。 ※2:ワンパルススタートSW付き(350NA1用)

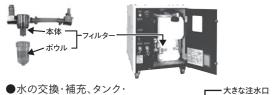
周辺機器 & オプション


水冷オプション (水冷トーチ使用時に選択してください)

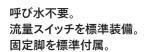
■冷却水装置

(水ホース3 m付)

冷却はいつもきれいな水で!


高い冷却能力。 200 kJ/minの高能力。

楽に手が


入ります

水回りのメンテナンスは工具不要で簡単に!

補充口

- ●水の交換・補充、タンク・ フィルターの着脱はワン タッチで可能。
- ●タンク・フィルターの清掃 が容易。
- ●いつもきれいな水でポン プトラブルが低減。

●一カ所に固定してご使用の場合にお使いください。

■冷却水(クーラントG)

CWU00183 (溶接·切断用…使用温度-20 ℃~+90 ℃) 水のトラブル解消に。

■定格仕様

品番		YX-09KGC1 (標準タイプ)	YX-09KGB1 (絶縁タイプ)	
定格入力電圧	V	200		
電源電圧変動許容範囲	V	180~220		
相数	_	単	相	
定格周波数	Hz	50/60	0兼用	
定格入力	W	230/330		
冷却水容量	L	9		
冷却方式	_	ラジエータによる強制空冷方式		
冷却水循環方式	_	ポンプによる強制循環方式		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	kJ/min	200		
冷却能力	kW	3.	.3	
循環冷却水水量**1	L/min	2.2/	/2.6	
循環冷却水水頭**1	m	20/	/25	
最大搭載質量	kg	60		
外形寸法(幅×奥行×高さ)**2	mm	380×545×474		
質量(乾燥時)	kg	31 37		

※1: 当社標準300 A水冷TIG溶接トーチ(4 m)接続時。 ※2: タンクの水補給口部分は含まれていません。

■本製品に適用できる水冷トーチは、下表のとおりです。

水冷式トーチ (定格電流/使用率)	YX-09KGC1 (標準タイプ)	YX-09KGB1 (絶縁タイプ)
一般TIGトーチ: (300 A/100 %)、(500 A/60 %)	0	0
高周波レススタートタイプ(300BC2) 使用時のTIGトーチ: (300 A/100 %)、(500 A/60 %)	×	0

■弊社溶接電源に固定する場合には、別途固定金具が必要です。

■冷却水装置用外付けタイプ流量スイッチアダプター

●YX-07KH

YX-09KGC1、YX-09KGB1等、流量スイッチ付冷却水装置以外を ご使用の際に必ずお使いください。

YC-350NA1

TIGフィラー溶接の『両手操作』を 『片手操作』へ

ご参考

アーク溶接機の二次側電線(母材側ケーブル)の太さ ※詳細は溶接機の取扱説明書をご確認ください。

二次電流(A)	溶接用ケーブルまたはその他のケーブル(mm²)
100以下	14
150 以下	22
250 以下	38
400 以下	60
600以下	100

プロセスエンジニアリングセンターのご案内

充実したサポート体制で皆様の 『モノづくり』に貢献します。

詳しくはWebで▶

溶接実証

初心者から熟練者まで さまざまなコースの 研修をご用意しております。

センター内には、カレッジ専用教室を設置。 専任の講師も待機しており、 ロボットカレッジ等を積極的に開催しております。 FA導入時の研修はもちろん、 さまざまな目的にご活用いただけます。

●プロセスエンジニアリングセンターは 大阪府、愛知県、埼玉県の3拠点がございます。 ワークトライで、サンプルの 溶接実証ができます。

プロセスエンジニアリングセンターの溶接機器は、 実際の工場を想定して設置しております。 専任のオペレーターが常駐し、 いつでも稼働・実演が可能です。

各種技術相談やシステム 導入時のご相談を承ります。

溶接機やロボットシステム等、溶接機器に 関するハード・ソフトのご相談を承ります。 お気軽にご相談ください。

パナソニック溶接機の最新情報

最新ニュースやカタログ、導入事例集など、 多彩な情報を掲載しております。

https://connect.panasonic.com/jp-ja/products-services_welding

取扱説明書のダウンロード

溶接機・切断機の最新の取扱説明書を 掲載しております。

https://connect.panasonic.com/jp-ja/products-services_ welding/downloads/manual

エンジン発動機について…溶接電源の定格入力kVAの2倍以上(単相適用機種の3倍以上)の容量のもので、ダンパー巻線を備えた発電機をご使用ください。 また、エンジン発電機の電圧・周波数が定格出力に達してから、本溶接機の電源スイッチを入れてください。詳しくはエンジン発電機メーカーにご相談ください。

安全に関するご注意

- ●ご使用の際は、取扱説明書をご確認の上、正しくお使いください。
- ●溶接機器は、換気することができ、可燃物のない屋内に設置してください。
- ●溶接で発生するアーク音やアーク光、飛散するスパッタやスラグから、作業者や他の人々を守るために、保護具を使用してください。
- ●溶接中に人体に有害な金属蒸気(ヒューム)が発生するため、防塵マスクを必ず着用してください。(特化則第2類物質より) ○防音保護具を未使用の場合は、回復しない騒音性の難聴を引き起こす場合があります。
 - ○防音保護具の種類*は、JIS T8161(防音保護具)に従ってください。 ※耳栓 耳覆い (イヤーマフ)

パナソニックグループは環境に配慮した製品づくりに取り組んでいます

Panasonic GREEN IMPACT

パナソニック溶接機・ロボットご相談窓口 各種ご相談は、右記にお問い合わせください。

0120-700-912

携帯電話からもご利用いただけます。

受付9時~12時、13時~17時 (土日、祝日、年末年始、当社所定の休日を除く)

●お問い合わせは…

パナソニック コネクト株式会社 溶接プロセス事業部

〒561-0854 大阪府豊中市稲津町3丁目1番1号

パナソニックFSエンジニアリング株式会社 〒140-0002 東京都品川区東品川4丁目10番27号 住友不動産品川ビル

このカタログの内容についてのお問い合わせは、左記にご相談ください。 または、パナソニック溶接機・ロボットご相談窓口におたずねください。

このカタログの記載内容は 2025年7月現在のものです。

3-005K